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Abstract
The association of decreased cancer risk with intake of cruciferous vegetables and selenium is stronger than that reported for
fruits and vegetables in general. An active constituent in cruciferae is sulforaphane. Chemopreventive effects of both,
sulforaphane and selenium have been attributed to an antioxidant action which certainly is too simplicistic. Sulforaphane
induces via activation of the Nrf2/Keap1 system phase 2 enzymes that protect against carcinogens and oxidants. Induced
enzymes comprise the selenoproteins thioredoxin reductase-1 (TrxR1) and gastrointestinal glutathione peroxidase (GI-GPx,
GPx2), which contain antioxidant response elements (ARE) in their promoter regions. Translational realisation of the
enhanced transcripts depends on adequate selenium supply, which explains the synergism of Nrf2 activators and selenium.
Regarding tumorigenesis the role of TrxR1 is ambiguous: it is essential for fast tumor cell growth but also diminishes
vascularisation of tumors. The anticarcinogenic role of GI-GPx is evident from enhanced gastrointestinal tumor formation in
gpx2/gpx1 double KO mice.

Keywords: Sulforaphane, selenium, colon cancer, adaptive response, GI-GPx, TrxR1

Background: five-a-day campaign versus more

specific dietary strategies for cancer prevention

Cancer is a major cause of mortality throughout the

world. An estimated 10 million new cases and more

than 6 million deaths from cancer occurred in 2000

[1]. Between 2000 and 2020, the cancer incidence is

predicted to increase by 29% in the developed world

[1], or globally by about 50% [2]. Apart from smoking

and infection, which are established risk factors, diet

has been significantly associated with cancer and it has

been estimated that 30–40% of all cancers can be

prevented by adequate diets, physical activity and
maintenance of appropriate body weight [3].

Our diet contains (pro)carcinogens but it also

contains protective factors. In 1997, the World Cancer

Research Fund (WCRF) from the American Institute

for Cancer Research reported of convincing evidence

for a protection from multiple forms of cancer by a

greater intake of fruits and vegetables [3]. One year

later the Chief Medical Officer’s Committee on

Medical Aspects of Food and Nutrition Policy of the

United Kingdom (COMA) reached similar

conclusions [4]. Altogether, early evidences were
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convincing so that the “five-a-day” campaign was

initiated.

However, not all cancers respond to a high intake of

fruits and vegetables and recent reports from

prospective cohort studies do not support the

protective role of fruits and vegetables that were

reported in the retrospective epidemiological and

case–control studies (reviewed in Ref. [5]). The

European Prospective Investigation into Cancer and

Nutrition (EPIC) cohort, e.g. did not find any

significant association between breast cancer risk and

fruit and vegetable consumption [6], whereas in

another cohort study evidences for a prevention of

colorectal cancer were more convincing [7]. Reasons

for the seemingly conflicting results were looked for in

the dietary questionnaires and in biased recall and

matching cases to controls in retrospective studies, but

also in random errors in the measurement of diet or

limited variability of dietary intakes in cohorts that

might have masked an association in the prospective

studies [5].

One of the reasons for the inconsistencies might be

that the general intake of fruits and vegetables is not

the adequate parameter to predict prevention.

Instead, some families of fruits and vegetables could

be more effective than others. For example, in the

Health Professional Follow-up Study, bladder cancer

was only weakly associated with a low intake of fruits

and vegetables [8], whereas a high intake of

cruciferous vegetables decreased bladder cancer by

significant 51% [9] and also breast cancer risk in

premenopausal women [10]. A meta-analysis of 7

cohort studies and 87 case–control studies revealed

that all cohort studies and 67% of the case–control

studies reported on an inverse association between

total crucifer intake and cancer risk, with cabbage,

cauliflower and broccoli being the most efficient ones

[11]. Thus, the association between cancer and

cruciferous vegetables is stronger than the association

between cancer and fruits and vegetables in general.

A relationship between low intake of selenium and

cancer risk was already reported in 1969 [12]. Many

in vitro, animal and prospective studies (reviewed in

Refs. [13,14]) have confirmed this relationship. So

far, however, there is only one double-blind,

randomized, placebo-controlled clinical trial that

supports a chemopreventive role of selenium [15]. In

this Nutritional Prevention of Cancer (NPC) trial,

1312 subjects with a history of non-melanoma skin

cancer were included taking either placebo or 200mg

selenium per day from selenium-enriched yeast in

which the chemical form of selenium is primarily

selenomethionine. After 4.5 years of treatment no

effect on the primary end point, recurrence of skin

cancer, was observed. However, selenium signifi-

cantly reduced total cancer mortality, and cancer

from prostate, colon and lung. In the follow-up

study to the end of blindness, the effect on total and

prostate cancer remained [16]. Thus, selenium can

at least influence the incidence of particular cancers.

In fact, systematic evaluation of all dietary agents

reported to suppress colon cancer in rodents and of

dietary prevention studies in humans qualify sel-

enium as first among the compounds that are

supposed to prevent cancer in humans [17] (http://

www.inra.fr/reseau-nacre/sci-memb/corpet/indexan.

html).

Cruciferous vegetables accumulate glucosinolates

which have been made responsible for their

chemopreventive effect. In addition, they are able

to accumulate selenium in various forms. It has,

thus, been tested whether selenium-enriched broc-

coli was more effective than selenite, selenate or

broccoli alone in the reduction of cancer incidence

in an experimental model of colon cancer suscep-

tibility. This was indeed the case [18,19]. One of

the most efficient glucosinolate-derived isothiocya-

nates is sulforaphane. It induces phase 2 detoxifying

and antioxidant enyzmes that in part explains its

anticarcinogenic functions. The recent findings that

sulforaphane is able to induce the selenoproteins

thioredoxin reductase-1 (TrxR1) [20–22] and the

gastrointestinal form of glutathione peroxidases

(GI-GPx) [23] brings selenium and sulforaphane

into a novel focus. We will, therefore, compile the

present knowledge on selenium as essential factor

for selenoprotein biosynthesis and on sulforaphane

as inducer of the adaptive response with the

ultimate goal to unravel potential links between

both dietary factors. They have for long been

considered as antioxidants but now appear to work

synergistically in the prevention of cancer by novel

mechanisms.

Cruciferae

Classification

The family of Cruciferae or Brassicaceae belongs to the

order of Capparales of the class of Magnoliopsida or

Dicots and includes the genera Brassica, Sinapis,

Rorippa and Armoracia with a large number of species

with chemopreventive potential (Table I). The

Brassica oleracea species contains a high number of

variants, like Brussel sprouts, cauliflower, (chinese)

cabbage, collards, and kale. Kohlrabi and rutabaga

belong to the turnip species (B. rapa). Mustard is

distributed over several genera (Table I). Broccoli was

derived from wild cabbage (B. oleraceae). During

cultivation it has become so complex that it was

systematically divided into several groups: common

broccoli (Botrytis group), and sprouting broccoli

(Italica group). Crucifers prefer temperate regions

such as the Mediterranean region where they reach

maximum diversity.
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Glucosinolates and metabolites

Glucosinolates, the effective components in cruciferae,

consist of a b-D-thioglucose group, a sulfonated oxime

moiety and a variable side-chain derived from amino

acids (Met, Phe, Trp or branched chain amino acids).

Based on the chemical nature of the side chains,

glucosinolates can be divided into different classes:

aliphatic, aromatic, indolyl or allylic glucosinolates

(Figure 1). Glucosinolates are hydrolyzed in a reaction

catalyzed by myrosinase to glucose and the respec-

tive aglycone. The aglycone is generally unstable and

undergoes a spontaneous rearrangement (Lossen-re-

arrangement) accompanied either by the loss of sulfate

to yield an isothiocyanate, such as sulforaphane,

phenethyl- or allyl-ITC (Figure 1) or at low pH by a

proton-dependent desulfuration resulting in a nitrile

and elemental sulfur (Figure 2). Elimination of sulfate

can also lead to the formation of thiocyanates.

Myrosinase is provided by the plants themselves or by

the gastrointestinal microflora. In plants, it is released

from cells disrupted during harvesting, mastication or

chopping. Cooking destroys the enzymatic activity.

Since mammalian tissues are devoid of myrosinase,

glucosinolates in cooked vegetables require bioacti-

vation by myrosinase produced by intestinal

bacteria [24].

Sulforaphane. Sulforaphane (SFN), the isothiocyanate

released from glucoraphanin, has chemopreventive

properties as shown in a large number of experimental

animal studies. Various mechanisms for the preventive

effects have been discussed:

. Initiation of cell differentiation, cell cycle arrest,

and apoptosis [25,26] would prevent tumor

growth. Disruption of microtubulin

polymerization has been proposed to explain cell

cycle arrest [27]. More recently, an inhibition of

histone deacetylase (HDAC) by SFN-metabolites,

SFN-cysteine and SFN-N-acetyl cysteine, has

been observed in vitro [28] and in vivo [29]. The

block in HDAC activity led to a de-repression of

p21CIP1/Waf1 and finally to a decrease in the overall

rate of cell growth and tumor development in

Apcmin mice [29]. Inhibition of HDAC is a novel

mechanism of how sulforaphane can influence gene

expression.

. Inhibition of NFkB activation would be anti-

carcinogenic by the inhibition of inflammation as

risk factor. As underlying mechanism the

interaction of sulforaphane with thiols of factors

required for NFkB activity, such as GSH,

thioredoxin, or Ref-1 has been discussed [30,31].

. One of the most intensively investigated effect of

sulforaphane is the induction of phase 2 enzymes,

which in some model systems is accompanied by

the inhibition of phase 1 enzymes [32]. Phase 2

Glucosinolates

Glucoraphanin
(aliphatic)

Glucobrassicin
(indolyl)

Gluconasturtiin
(aromatic)

Sinigrin
(allylic)

broccoli
but not in:

Brusselsprouts,
cabbage,

cauliflower

broccoli,
almost in

all crucifers

Chinese cabbage,
radishes,

water cress

in species
other

than broccoli

sulforaphane indole-3-carbinol phenethyl-ITC allyl-ITC

CH3 S (CH2)4

O

N C S
N
H

CH2-OH

+ SNC 
CH2 CH2 N C S CH CH2H2C N C S

Figure 1. Glucosinolates, occurrence in crucifers and released isothiocyanates.

Table I. Systematic classification of selected cruciferous

vegetables.

order: Capparales

family: Brassicaceae/Cruciferae

genus: Brassica

species: B. oleracea (cabbage)

B. napus (rape)

B. rapa (turnip, tendergreen mustard)

B. nigra (black mustard)

B. campestris (wild mustard, yellow)

genus: Sinapis

species: S. alba (white mustard)

genus: Rorippa (also called Nasturtium)

species: R. nasturtium-aquaticus (water cress)

genus: Armoracia

species: A. rusticana (horseradish)
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enzymes counteract the pro-carcinogenic actions of

phase 1 enzyme products by reducing the

electrophilicity of reactive carcinogens via

conjugation with endogenous ligands such as

glutathione and glucuronic acid. In so far, up-

regulation of the phase 2 system supplies to an

organism a powerful arsenal to cope with

electrophilic and oxidative toxicants and facilitates

their elimination and/or inactivation [33]. Phase 2

enzymes are induced by the activation of the

transcription factor Nrf2 which will be discussed in

more detail below.

The Nrf2/Keap1 system

Nrf2 is the NF-E2-related factor 2, a member of the

NF-E2 family of basic leucine zipper transcription

factors (b-ZIP). It binds to the “antioxidant response

element” (ARE) better called the “electrophile

responsive element” (EpRE), which is present in the

promoters of genes encoding phase 2 enzymes and

enzymes of the antioxidant system (Table II), and

activates their transcription [34]. Nrf2-deficient mice

display reduced expression levels of phase 2 enzymes

and accordingly an increased susceptibility to carcino-

gens [35]. Evidently, Nrf2 is the key transcription

factor in the regulation of detoxification.

Nrf2 interacts with Keap1, the Kelch-like ECH-

associated protein-1. Keap1 contains 25 cysteine

residues conserved in human, rat, and mouse, which

could serve as redox sensors [36] but also bind zinc, as

has recently been demonstrated [37]. In mice, crucial

cysteines have been identified as Cys 273 and Cys 288

[38]. The common view of the Nrf2/Keap1 interplay is

that Keap1 retains Nrf2 in the cytoplasm and prevents

is activation. To this end Keap1 homodimerizes via its

BTB (broad comlex, tramtrack and bric-a-brac)

domain and interacts with Nrf2 and with actin via its

Kelch repeats (reviewed in Ref. [39]). This complex of

Keap1, Nrf2 and actin localizes in the perinuclear

space. The release of Nrf2 and its subsequent nuclear

translocation is achieved by a change in the confor-

mation of Keap1 via modification of one or more of

the crucial cysteine residues. More recent studies,

however, revealed that this scheme is still too

simplicistic. Keap1 does not merely sequester Nrf2 in

the cytoplasm, it also regulates its degradation. Keap1-

bound Nrf2 becomes ubiquitinylated and is degraded

by the ubiquitine-proteasome pathway. Eliminated

Nrf2 is constantly replaced by newly synthesized one

[40,41]. In this view, Keap1 functions as a substrate

adaptor that bridges Nrf2 to the Cul3-Rbx1-E3

ubiquitin ligase complex [42–44]. The complex does

not only ubiquitinylate Nrf2 but also Keap1 [45].

Free Nrf2 is more stable and less frequently

degraded. Free Nrf2, either released from Keap1 or

newly synthesized and not yet bound, translocates into

the nucleus. Several signals mediating its nuclear

transport have been discussed.

. Phosphorylation of Nrf2 by PKC [46,47] facilitat-

ing its dissociation from Keap1. Ser-40 has been

identified as phosphorylation site.

R
S-ßD-Gluc

NOSO3

R-N=C=S    

Glucose

R-C   N

isothio-
cyanate

nitrile

thiocyanate     R-S-C   N

myrosinase

H2O

C

SR

N

OSO3

H2SO4
–

–

S

Figure 2. Common degradation products of glucosinolates.

Table II. Targets for Nrf2.

Targets for Nrf2 Reference

Phase 2 detoxifying enzymes

UDP-glucuronosyl transferase 1A6 [120]

aflatoxin B1 aldehyde reductase [121]

microsomal epoxide hydrolase [122]

glutathione-S-transferases [34,123]

NADPH quinone oxidoreductase [34,124,125]

Redox-active proteins

heme oxygenase 1 [126,127]

ubiquitin/PKC-j-interacting protein A170 [128]

peroxiredoxin 1 [128,129]

heavy and light chain

of ferritin

[130,131]

thioredoxin [93]

thioredoxin reductase-1* [20–22]

dihydrodiol dehydrogenase [132]

cyclooxygenase-2 [133]

GSH-related enyzmes

g-glutamyl-cysteine synthetase [134]

cystine/glutamate exchange transport system

Xc
-

[135]

gastrointestinal glutathione peroxidase (GI-GPx,

GPx2)*

[23]

leukotriene B4 dehydrogenase [136,137]

* Selenoproteins.

R. Brigelius-Flohé & A. Banning778
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. Actin depolymerization controlled by PI3K-related

signals [48,49] causing the translocation of Nrf2

and actin. The switch-off signal is actin repolymer-

ization which allows Nrf2 and actin to exit the

nucleus.

. Mediation of the nuclear transport by nuclear

importin and exportin proteins [50]. These

proteins recognize nuclear localization signals

(NLS) or nuclear export signals (NES) on cargo

proteins in a Ran GTPase-dependent manner.

Surprisingly, these signals have not only been found

in Nrf2 but also in Keap1. In Nrf2, an NES [51,52]

locates in the leucine zipper dimerization domain

and an NLS in the C-terminus [52]. The NLS

directs Nrf2 to the nucleus. The NES shuttles Nrf2

via Crm1 (chromosome region maintenance)/

exportin [53] and has to be masked, probably by

heterodimerization with small Maf proteins, to

maintain Nrf2 in the nucleus. In Keap1, an NES

lies between the BTB and the Kelch domain [53].

Blocking of Crm1/exportin by leptomycin B results

in a nuclear localization of both Nrf2 and Keap1

indicating that Keap1 obviously enters the nucleus

together with Nrf2 and is shuttled between the

cytoplasm and nucleus via Crm1/exportin. The

meaning of the transport of Keap1 into the nucleus

is not clear yet. It has been suggested that either

Keap1 picks up Nrf2 from the nucleus or enters the

nucleus to present Nrf2 to the nuclear proteasome

for degradation.

Thus, Keap1 can oppose Nrf2 activation in 3 ways:

(1) cytoplasmic sequestration, (2) targeting Nrf2 for

proteasomal degradation and (3) facilitating the

export of Nrf2 from the nucleus. Whatever the precise

mechanism of Nrf2 activation will turn out to act in

vivo, activation of Nrf2 can be obtained by a change in

the conformation of Keap1 in any of the scenarios.

This can be achieved by (i) exposure of cells to thiol

modifying/oxidizing agents reacting with critical

cysteine residues [54] (ii) displacement of zinc from

the coordinating cysteines [37], (iii) ubiquitinylation

of Keap1 resulting in its proteasome-independent

degradation [45], or (iv) inhibition of the ubiquitiny-

lating effect of Keap1 [55]. All these events can be

mediated by compounds with oxidative or electro-

philic properties (see below). Under oxidative

conditions Keap1 is released from the cytoskeleton

and from the degradation machinery. This favours the

nuclear localization of Nrf2 leading to the activation of

the respective target genes. Induction is terminated by

the export of Nrf2, re-binding to Keap1 and

proteasomal degradation.

Nrf2 activators. Many Nrf2 activators (Table III) are

derived from the diet (reviewed in [56]). Their

chemical structure is varied but they have in

common to be electrophilic, to modify thiols, or to

chelate metal ions [57–59]. Isothiocyanates most

probably modify Keap1 by thiol modification via a

Michael addition [36,38], although a direct binding to

Keap1 SH groups has only been shown for 15-deoxy-

Delta12,14-PGJ2 [60]. However, a direct interaction

might not necessarily be required. ITCs, especially

sulforaphane, not only react with protein thiols but

much faster with glutathione thereby shifting the

cellular redox status to a more oxidized one.

In consequence, proteins become modified at

cysteine residues as a novel regulatory principle [61–

63]. Keap1 might be one of the first sensors

responding to an altered cellular redox state and

might become modified by oxidation rather than by

covalent modification. High concentrations of

sulforaphane also induce apoptosis which can be

explained by the same shift in the cellular oxidation

state [64,65].

Selenium

How selenium is anti-carcinogenic is not clear at all. It

has often been declared as an antioxidant. However,

selenium is an element which can occur in many

different chemical forms, most of which do not have

antioxidant functions [66]. In mammals, selenium is

an integral part of selenoproteins in the form of

selenocysteine (SeCys). SeCys is encoded by TGA

and is incorporated into the growing peptide chain

during translation by a unique mechanism (reviewed

in [67,68]). The human selenoproteome consists of 25

selenoproteins [69] from which 5 are glutathione

peroxidases, 3 thioredoxin reductases and 3 deiodi-

nases. The function of most selenoproteins is far from

being clear. Even within the family of glutathione

peroxidases, which all reduce hydroperoxides, each

individual member appears to have additional

Table III. Activators of Nrf2.

Activators of Nrf2 References

isothiocyanates [58]

dithiol-thiones (oltipraz) [58,138]

oxidizable hydroquinones [58]

Michael reaction acceptors [139]

trivalent arsenicals [125]

heavy metals [125]

vicinal dimercaptanes [125]

carotenoids/polyenes [140]

hydroxynonenal [129]

(-)epigallocatechin-3-gallate [141]

(-)epicatechin-3-gallate [141]

oxidized LDL [129]

shear stress [142]

ER stress [143]

heme [144]

hydroperoxides [125]

15d-PGJ2 [145]
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individual functions [70–73]. In view of the muta-

genic potential of peroxides, optimization of GPx-

activity has amply been discussed as the underlying

mechanism for the protective effect of selenium.

However, to become incorporated into selenoproteins

selenium compounds have to be metabolized to

selenide [74] which is not possible for all selenium

compounds. Thus, other mechanisms than up-

regulation of selenoproteins might be involved in

their beneficial effect and the need for supra-

nutritional selenium intake to observe a chemopre-

ventive effect appears to support this assumption [75].

However, full expression of selenoprotein P requires

greater selenium intake than that needed for optimal

plasma GPx expression [76], indicating that an

adequate marker for the selenium status has not yet

been found and that there might be selenoproteins

only responding to high levels of selenium. So far,

investigations of the regulation of selenoprotein

expression have mainly been focused on the avail-

ability of selenium needed for translation. Regulation

of the transcription has been considered with less

emphasis, a situation which will change after the

recent findings that selenoproteins can be induced by

activators of the Nrf2/Keap1 system.

Selenoproteins induced by sulforaphane

Thioredoxin reductase. Thioredoxin reductases (TrxRs)

are a family of NADPH-dependent selenoflavoproteins

ubiquitously found in mammalian tissues. So far, 3

isoforms are known, the classical cytosolic form

(TrxR1), the mitochondrial form (TrxR2) and the

testes-specific thioredoxin and glutathione reductase

(TGR) (for review see Ref. [77]). TrxRs reduce Trx-S2

to Trx-(SH)2 using NADPH as reduction equivalents.

TrxR is a homodimeric protein that contains two

distinct redox centers in each subunit. The first one

resembles typical disulfide reductases in comprising

FAD with associated cysteines. The second one is

situated at the C-terminus and consists of Gly–Cys–

Sec–Gly–COOH [78]. Its role is to transfer the

reduction equivalents from the central redox center to

the substrate.

The Trx/TrxR couple acts as a protein disulfide

reductase system that contributes to the redox

regulation of transcription factor activity, cell growth

and inhibition of apoptosis. Trx is a key factor for

DNA synthesis by directly transducing electrons to

ribonucleotide reductase [79]. The continuous

reduction of thereby oxidized Trx is indispensable

for cell proliferation. In so far, the Trx/TrxR system is

absolutely required for healthy cells. However, the

beneficial effects of the system might change to its

opposite during the growth and progression phase of

tumors. The Trx/TrxR system is often up-regulated in

cancer cells. But, whereas an enhanced Trx level has

been associated with aggressive tumor growth and

poor prognosis [80], the role of TrxR in cancer is not

entirely clear. TrxR is highly expressed in a number of

human tumors [81,82] and during carcinogenesis

[83]. Inhibition of TrxR1 indeed prevented cancer cell

growth in vivo [82] and TrxRs have been suggested as

potential targets for anticancer drugs [84]. In the

reduced form of TrxR and at physiological pH

(–SH/–Se2), the selenide is easily attacked by

electrophiles and alkylating agents. If the first

electrophilic molecule is bound, a second can alkylate

the neighbouring cysteine as has been shown for the

binding of curcumin to TrxR [85]. In this way, the

activity of TrxR is irreversibly lost. A number of

electrophilic anticancer drugs have been tested for

their ability to inhibit TrxR activity and found to be

effective [86]. Inhibition of TrxR activity may

contribute to the anticancer effect of these drugs but

may also explain their toxicity to healthy cells. Thus,

inhibition of TrxR is a double-edged sword.

The direction of Trx/TrxR research mentioned so

far is surprising since the antioxidant thioredoxin

system has initially been considered to prevent tumor

initiation, as it prevents oxidative DNA damage. Also,

discrepancies between in vitro and in vivo investi-

gations on the effect of TrxR1 levels on tumor growth

have been reported [87]. Further, overexpression of

TrxR1, and to a lesser extent also TrxR2, decreased

cell growth and induced the expression of epithelial

differentiation markers in HEK-293 cells [88].

Chemical inhibition of TrxR in primary bovine

mammary endothelial cells led to an increase in

VEGF and VEGF receptor expression, cell migration,

proliferation and angiogenesis [89], which are effects

that are indispensable for tumor growth. Thus, TrxRs

might be both anti-carcinogenic by dampening

neovascularization of neoplastic tissue and promoting

differentiation or pro-carcinogenic by facilitating

proliferation in general. Their precise role in

tumorigenesis therefore will depend on the stage of

the tumor development.

Recent manipulation of the Trx/TrxR system shed

new light on its role in carcinogenesis. Treatment of

HUVEC with the a, b-unsaturated aldehyde acrolein

did not only inhibit TrxR activity, as expected, but also

initiated a recovery of activity after several hours due

to an induction of the enzyme [90]. As outlined above,

electrophiles such as acrolein are potent activators of

Nrf2, and a functional ARE is indeed present in the

promoter of TrxR1. Activators of Nrf2, including

sulforaphane, induced TrxR1 but not TrxR2 [20–22].

Also cadmium [91], arsenite, H2O2 and DEM [92]

were effective. Whereas, cadmium activated Nrf2 by

the inhibition of its proteasomal degradation, the

other compounds rather acted by thiol modification.

TrxR1 induction by sulforaphane was synergized by

selenium supplementation [20], indicating that the

increase in mRNA can be used to translate more

protein if selenium is available. Yet Nrf2 activators not
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only induce TrxR1 but also thioredoxin [93]. The

induction of the entire Trx/TrxR system by a

transcription factor that is generally accepted to

trigger the adaptive response suggests that the

phenomenon is rather meant to prevent tumor

initiation than to inhibit the growth of an existing

tumor. In view of the high concentrations of Trx and

TrxR in many tumor cells, it remains to be investigated

whether the up-regulation is a remnant from the

attempt to counteract tumor initiation upon certain

stimuli or a mechanism to sustain tumor growth.

GI-GPx. The gastrointestinal glutathione peroxidase

(GI-GPx, GPx2) has first been identified to be

exclusively expressed in the gastrointestinal system

and suspected to act as barrier against hydroperoxide

absorption. Yet it soon became obvious that its

expression was not limited to the GI system. GI-GPx

was found in several cancer cell lines and was up-

regulated in pre-neoplastic lesions in skin cancer [94]

and in early stages of adenomatous polyposis [95].

GI-GPx2/2 mice appear to have a normal

phenotype [96], but mice deficient in both, cGPx

(GPx1) and GI-GPx, showed retarded growth after

weaning, exhibited severe ileocolitis starting at day 11

of age [97], and developed intestinal cancer [98].

Interestingly, the development of both, ileocolitis and

tumors depended on, or were essentially aggravated

by, colonisation of the intestine by bacteria. The

intimate relationship of GI-GPx and the gastrointes-

tinal flora is further evidenced by an induction of GI-

GPx expression upon colonisation of the intestine

[99]. These observations point to a pivotal role of GI-

GPx in counteracting and developing tolerance to

inflammatory stimuli of the intestinal microflora.

An endogenous inducer of GI-GPx has so far not

been recognized. Chu et al. [100] first identified

several caudal homeobox protein binding sequences

and two retinoic acid responsive elements in the GI-

GPx gene and showed that endogenous GI-GPx could

be induced by retinoic acid in some (MCF-7) but not

all (HT29) cells. More recently, Morbitzer and Herget

[101] discovered that GI-GPx was down-regulated in

hepatoma cells infected with hepatitis C virus

subgenomic RNA. Induction of GI-GPx by retinoic

acid suppressed the HCV replicon suggesting a

therapeutically interesting inverse relationship of GI-

GPx levels and viral replication.

In several microarray studies, GI-GPx transcripts

were elevated together with phase 2 enzyme tran-

scripts upon exposure to the Nrf2 activator sulfor-

aphane or to hyperbaric oxygen [102,103]. Based on

the GI-GPx promoter description of Kelner et al.

[104], the 50 region of GI-GPx was cloned and

analysed for transcription factor binding sites and the

functionality of putative antioxidant responsive

elements (ARE) was investigated by Banning et al.

[23]. From the two AREs identified, the ATG-

proximal ARE proved to be indispensable for

endogenous and sulforaphane-induced GI-GPx

expression. The enhancement of a GI-GPx promo-

ter-driven reporter gene expression by transfection

with Nrf2 and suppression thereof by transfection

with Keap1 finally identified GI-GPx as a target for

Nrf2 [23].

GI-GPx is the second selenoprotein found to be

regulated by the Nrf2/Keap1 system. Like TrxR1 GI-

GPx belongs to the antioxidant defence system, but

like TrxR1 it might have alternative functions in the

redox regulation of enzymes. GI-GPx is a selenopro-

tein ranking highest in the hierarchy of selenoproteins

investigated so far [105]. Whereas the mRNA from

low ranking selenoproteins, like cGPx (GPx1), is

degraded when selenium becomes limiting, the

mRNA of GI-GPx can even increase and becomes

preferentially translated when selenium supply is

restored [105]. The ranking of TrxR1 is lower, but

overexpression of TrxR1 led to a decrease in cGPx,

indicating that enhanced TrxR1 transcripts withdraw

selenium from the biosynthesis of obviously less

important selenoproteins [88].

Remains the question when it makes sense to

increase the mRNA of a protein that is preferentially

synthesized anyway. The most plausible answer might

be under selenium-limiting conditions when the

expression of even high-ranking selenoproteins is

decreased. The limited amounts of selenium could

then be used to translate an enhanced level of mRNA.

The ability of trace amounts of GI-GPx to prevent

ileocolitis and, in consequence tumor formation was

convincingly demonstrated in mice with the genotypes

Gpx1 2/2Gpx2 þ/2 and Gpx1 þ/2Gpx2 2/2 that were

grown under restricted selenium supply [106]. One

allele of Gpx2 was sufficient for complete protection

even under selenium restriction.

The function of an up-regulated GI-GPx might be

rather anti-inflammatory than intrinsically anti-carci-

nogenic, i.e. it rather prevents tumor initiation by

inflammatory mediators than tumor progression, as

outlined by Chu et al. [107]. Abundant evidence exists

for linking inflammation and cancer. An essential

percentage of malignancies are caused by infectious

Agents, including hepatitis B and C virus (liver

cancers), human papilloma viruses (cervical cancer),

and Helicobacter pylori (stomach cancer). Vaccinations

could be the key to prevent these types of cancers.

Also chronic inflammation obviously facilitates cancer

development, e.g. Crohn’s disease (cancer of the small

intestine), or ulcerative colitis (colon cancer) (reviewed

in [108]). The link might be activated NFkB shown to

be crucial for malignant transformation [109–112],

enhanced expression of cyclooxygenase-2 (COX-2)

[113], and/or induction/activation of lipoxygenases

[114]. Accordingly, increased levels of PGE2 and

leukotriene B4 are found at sites of inflammation and of
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tumor formation. The role of GI-GPx in this scenario

has not yet been investigated. However, in analogy

to the other glutathione peroxidases, an inhibition of

the activity of lipoxygenases and cyclooxygenases

appears to be a plausible explanation (reviewed

in Ref. [73]). As overexpression of PHGPx (GPx4)

in tumorigenic L292 cells prevented PGE2 production,

cell proliferation, and solid tumor growth in nude

mice [115], a similar function of GI-GPx may be

postulated.

Combination of sulforaphane and selenium

The possible synergism that might be obtained by

feeding selenium together with sulforaphane sounds

promising. Synergy has been observed in the

enhanced up-regulation of TrxR1 protein by sulfor-

aphane in the presence of selenium in HepG2 cells

[20] but so far not in vivo. Vegetables serving as good

sources for a high selenium and high sulforaphane

supply again are cruciferae since they do not only

accumulate glucosinolates but also selenium. Accord-

ingly, increasing the selenium content in broccoli

should raise the power of glucosinolates. Broccoli

grown on selenium-fertilized ground indeed inhibited

the formation of chemically induced preneoplastic

lesions in rat colon [18], of spontaneous development

of intestinal tumors in mice [116] and of mammary

tumors in rats [19]. But a recent in vitro study failed to

explain the in vivo findings by the proposed interaction

of sulforaphane and selenium in the adaptive

response. Surprisingly, the sulforaphane content of

broccoli grown on substrates with high, medium and

low selenium was inversely correlated with the

selenium content [117]. Indeed, selenium fertilisation

of broccoli changed the pattern of phenolic com-

pounds and the content of glucosinolates, especially

that of glucoraphanine from which sulforaphane is the

breakdown product [118]. In consequence, the

extract of selenium-enriched broccoli did not induce

an adaptive response, as measured by NQO1

expression, whereas it optimized the selenium-

dependent antioxidant systems, as was evident from

a slight increase of TrxR1 activity and a rise of the

primary antioxidant selenoenzyme cGPx [117]. The

latter effect was associated with an optimum protec-

tion against oxidative DNA damage in terms of DNA

strand breaks. This observation might explain why

selenium-enriched broccoli exerts chemopreventive

efficacy in vivo despite a marginal or absent activation

of the adaptive response.

Selenium thus contributes to the prevention of

cancer in two ways: It optimizes the cellular

antioxidant system in a largely ARE-independent

way (the cGPx promoter does not contain an ARE

element) and it synergizes with plant-derived electro-

philes such as sulforaphane in full expression of the

adaptive response. In order to exploit both protective

mechanisms, selenium fertilisation of cruciferous

plants is evidently not the way of choice. Instead, the

glucosinolates and the selenium, which is required for

their activity, should be supplied from different

alimentary sources.

Conclusions

Emerging evidence tends to rule out any direct

antioxidant action as principle of tumor prevention by

cruciferae-derived antioxidants such as sulforaphane

and by alimentary selenium compounds. Instead,

many of such plant-derived compounds of which

sulforaphane is just a well investigated prototype,

activate the Nrf2/Keap1 system and thereby induce

protective phase 2 enzymes. These comprise two

selenoproteins, TrxR1 and GI-GPx, the latter

according to the KO mice experiments appear to be

anti-carcinogenic. For full expression of the adaptive

response by sulforaphane, adequate or enhanced

selenium supply is mandatory.

Plant-derived micronutrients that proved to be

antioxidants in vitro activate the adaptive response

through Keap1 modification in vivo. They can do so in

different ways: (i) by direct alkylation of essential SH

groups due to their electrophilic potential, (ii) via

autoxidation-derived superoxide and peroxide for-

mation resulting in Keap1 oxidation, or (iii) by

shifting the cellular redox balance towards an

oxidative state with similar consequences. Similarly,

the preventive effects of selenium may result from

different mechanisms: (i) optimization of expression

of antioxidant selenoproteins such as cGPx, (ii)

oxidative activation of Keap1 via an oxidative stress,

as is induced by supranutritional selenium sup-

plementation [119] and (iii) by cooperation with

plant-derived Nrf2 activators in establishing the

adaptive response. Inducing the adaptive response

triggered by a mild oxidative stress via autoxidation of

antioxidants or S-alkylation of Keap1 by electrophilic

plant compounds may therefore be considered as kind

of vaccination to render the organism more resistant to

severe oxidative stress or exposure to strong alkylants,

which both are clearly pro-carcinogenic. The emer-

ging interdependence of selenium biochemistry and

expression of adaptive response is one example for the

relevance of a balanced diet and should pave the way

to more rational dietary recommendations for the

prevention of cancer.

Acknowledgements

This work was supported by the Deutsche

Forschungsgemeinschaft, DFG, Priority program:

Selenoproteins, SPP1087, Br778/5-3.

R. Brigelius-Flohé & A. Banning782
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